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Abstract. Using simple and general arguments we propose an effective Hamiltonian for the description of
low-energy pure QCD. The Hamiltonian is a function of spatially constant collective modes. Its eigenstates
can be organized into bands classified by the irreducible representations of an O(8) group. The latter also
determine parity and charge conjugation of the states. The energy spectrum agrees well with the glueball
spectrum as measured on the lattice, and in particular the level ordering with respect to spin is naturally
explained.

1 Introduction

QCD is widely considered to be the fundamental theory
governing the strong interactions. Its chief success to date
has been in describing experimental data at high energies
– deep inelastic scattering – where the partonic nature
of hadronic constituents plays a dominant rôle. In this
regime the asymptotically free nature of the QCD running
coupling constant, g, comes to the fore allowing for a per-
turbative expansion using as basis states free, i.e. g → 0,
gluons and quarks. At low energies, however, comparable
succcess has been conspicuous by its absence. As is well
known this is due to the phenomenon of infrared slavery
which has as a consequence the confinement of coloured
states, i.e. gluons and quarks are bound together to form
hadrons. How to describe the crossover as a function of
scale between such radically different effective degrees of
freedom remains as one of the most challenging problems
in particle physics.

Without reliable access to the infrared via the funda-
mental theory itself recourse is often made to treatments
that use additional assumptions, such as adding confine-
ment by hand (as in [1]–[6]), or that use effective field the-
ory descriptions such as working directly with the meson
and baryon fields and adjusting the interaction parame-
ters to experimental data [7]. The fundamental question
remains however: how does one derive the effective theory
consistently from the underlying more fundamental the-
ory? In the present case, as QCD has only one parameter,
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ΛQCD, how do the interaction parameters of the effective
theory depend on it? Finding the answer to this question
is, of course, a very ambitious enterprise which will not be
resolved in this paper.

One notable attempt, related to the approach of this
paper, is the work of Lüscher, van Baal and collabora-
tors [8] who use a “non-perturbative” approximation of
Born-Oppenheimer type wherein one tries to integrate out
“fast” (short wavelength) fluctuations thereby leaving an
effective theory for the “slow” (long wavelength) modes.
In the case of QCD if this separation is carried out consid-
ering the theory to be confined in a small box with peri-
odic boundary conditions, which acts as an infrared cutoff,
then the fast modes can be integrated out using pertur-
bation theory. In fact, as the QCD vacuum is translation-
ally invariant, we can consider integrating out all non-
constant modes thereby yielding an effective field theory
of constant gauge fields. In effect, one is now considering
a one-dimensional field theory, i.e. quantum mechanics.
In the case of the pure gauge theory the spectrum of the
resulting Hamiltonian will lead to the glueball spectrum.
However, this is the glueball spectrum associated with a
“universe” that is smaller than a fermi. To describe the
real world it is necessary to take a box that has at least a
few times the size of the glueball. Unfortunately, this leads
to a breakdown in the perturbation theory that is used to
integrate out the non-constant modes. The physical rea-
son is simple: the perturbation theory is associated with
free gluons, however, the long wavelength modes are bet-
ter described by other non-perturbative effective degrees
of freedom. Thus, although the methodology in principle
is a very powerful one, leading to an effective field the-
ory that depends only on the running coupling constant,
in practice one finds that in trying to extend it to larger
boxes one encounters the same fundamental problem that
led to the introduction of the box in the first place.
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Here we will take a somewhat less ambitious path moti-
vating an ansatz for an effective Hamiltonian via an analy-
sis of the group-theoretical structure of QCD, then analyz-
ing some of the consequences of this ansatz, in particular
the spectrum of glueball masses. First of all we will take
the effective Hamiltonian to depend on spatially constant
modes only. From the point of view of the functional in-
tegral in principle it is always possible to integrate out
the non-constant modes. However, if one is implement-
ing an approximation technique to do it one has to check
that the resulting approximation is trustworthy. As men-
tioned this has been investigated by Lüscher, van Baal
and collaborators [8]. Their approximation breaks down
when long wavelength gauge modes (other than the zero
mode) become strongly coupled. Nevertheless, given the
translation invariance of the QCD vacuum one would still
expect an expansion around the ground state to be an
expansion around a spatially constant state. We will take
that attitude here and work with an effective Hamiltonian
that only depends on spatially constant modes. We will re-
strict attention to the pure gauge sector of QCD. Hence,
when considering excited states we will only be consider-
ing glueballs. Given the present experimental status, it is
difficult to compare our results to the outcome of actual
measurements, however, we can compare with results ob-
tained from lattice simulations that restrict to the pure
gauge sector.

As a first step, in Sect. 2, we formulate a classification
scheme for a many-gluon system, assuming the dominance
of only one mode with JP = 1−. This will enable us to
order many-gluon states into bands defined by the irre-
ducible representations of an O(8) group. This step alone
plays an important rôle, allowing us to explain the level
ordering observed in [9,10]. This result is to a large ex-
tent model independent, the only assumption being that
gluon number (here we are referring to constituent gluons
not perturbative g → 0 gluons) is approximately a good
quantum number, and that the more gluons in a state the
higher the corresponding energy.

Next, in Sect. 3, we make an ansatz for the effec-
tive Hamiltonian of QCD in terms of spatially constant
gauge fields motivating the use of a kinetic energy that
is quadratic in momenta. We further introduce a change
of variables on the space of spatial gauge potentials such
that the new variables are related to the intensity of the
spatial gauge field, the spatial quadrupole distribution and
the rotational angles in space and colour space. These vari-
ables have been widely used in nuclear physics [11,12] and
also in QCD [8,13]. Though we work with constant modes
here, this restriction is not necessary in general. In fact,
the new variables as functions of space and time qualify
as candidates for effective fields that better describe low
energy QCD. With a simple ansatz for the potential term
the resulting effective Hamiltonian turns out to be a func-
tion of a one-dimensional oscillator, a five-dimensional os-
cillator and some Casimir operators of symmetry groups
appearing in the problem of many gluon systems. The first
oscillator describes changes in the intensity of the gluonic
field while the second is related to the quadrupole defor-

mation of the gluonic field with respect to an “intrinsic”
system yet to be defined (it will be similar in structure
to the “body fixed frame” of a nucleus). One feature of
the effective Hamiltonian is that there exists a conserved
quantity which one can naturally identify with the number
of constituent gluons.

The resulting effective Hamiltonian depends on sev-
eral parameters which we determine in Sect. 4 by fit-
ting the corresponding spectrum to several glueball states
with spin, parity and charge conjugation JPC and masses
known from lattice gauge calculations. We subsequently
make predictions for all other states and compare, where
possible, with lattice simulations and results from other
phenomenological models, such as the MIT bag model.
Finally in Sect. 5 we draw our conclusions.

2 Gluon taxonomy

As a first step to understanding the structure of the spec-
trum of a many gluon system one has to determine which
values of JPC can appear, where J refers to spin and P , C
to parity and charge conjugation, respectively. It is implic-
itly understood that only colour zero states are allowed. To
deal with this problem in an efficient way it is not sufficient
to consider the SU(3) colour and SO(3) spin groups only.1
One reason for this is that gluon fields do not transform ac-
cording to the fundamental irreducible representation (ir-
rep) of the colour group. The main point, however, is that
we are dealing with a system of identical bosons, hence it is
necessary to implement Bose-Einstein statistics. This can
be done most conveniently by considering higher groups.
With respect to colour rotations, the gluonic fields trans-
form like vectors in an eight-dimensional space so we can
associate a rotation group O(8) with colour transforma-
tions. Extending the latter rotations to unitary transfor-
mations, we arrive at the group U(8) [14]. In the same way
the spatial rotations can be associated with an U(3) group
containing the SO(3) spin group. Bose-Einstein statistics
are then implemented by connecting at this level the spin
and colour transformations formally to an U(24) group.

We thus obtain the following group chain [15]:

[N ] [h1h2h3]
U(24) ⊃ U(8) × U(3)

ξ ∪ ∪
(ω1ω2ω30) O(8) SU(3)J (p, q)

∪ ∪ K

(0, 0) SU(3) SO(3) J, M

(1)

where for each group the quantum numbers of the cor-
responding irrep are given and ξ and K are multiplicity
indices appearing in the respective reductions. The symbol
[N ] denotes the completely symmetric irrep of U(24) for N

1 Note that we use SO(3) rather than SU(2) as we are re-
stricting our attention to integer spins
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gluonic modes, which implements the Bose-Einstein statis-
tics. The possible irreps of U(8) and U(3) are then given by
the Young tableaux [h1h2h3], consisting of three rows with
h1, h2 and h3 boxes, respectively, where h1 +h2 +h3 = N .
The fact that the U(8) and U(3) irreps are coupled to
the completely symmetric irrep of U(24) constrains their
Young tableaux to be equal [14].

The U(3) group reduces via SU(3)J , where J denotes
spin, to the rotation group SO(3). The reduction rules
are given in [16], but will be summarized here for easier
reference. First the reduction from the irrep [h1h2h3] of
U(3) to (p, q) of SU(3)J is simply given by p = h1 − h2
and q = h2 − h3. The possible irreps J (with magnetic
quantum number M) of SO(3) are then determined by
the possible values of the multiplicity index K,

K = min(p, q),min(p, q) − 2, . . . , 0 or 1 , (2)

and

J = max(p, q),max(p, q) − 2, . . . , 0 or 1 for K = 0
J = K, K + 1, . . . , K + max(p, q) for K 6= 0 .(3)

The group that describes rotations in colour space is
U(8), and it reduces via O(8) to the physical colour group
SU(3), where we restrict to colour singlets, i.e. to the triv-
ial irrep (0, 0). The intermediary orthogonal group O(8)
will play a very important rôle in the following develop-
ments. The O(8) quantum numbers are (ω1ω2ω30), where
only three of the four numbers can be non-zero as a con-
sequence of the restriction of the U(8) irrep to three rows
[17]. The largest O(8) irrep contained in a given irrep
[h1h2h3] of U(8) is the one with ωk = hk, k = 1, 2, 3. The
precise rules for the reduction of U(8) to O(8) are given,
for instance, in [17] (there is also a computer program
available for arbitrary irreps of different classical groups
[18]). The reduction of O(8) to SU(3) will be carried out
in a recursive manner using the reduction of U(8) to O(8)
just mentioned and the reduction of U(8) to SU(3). The
latter is given explicitly for up to five (constituent) gluons
in [15], and the reduction for an arbitary irrep of U(8) can
be found in [19]. The recursive procedure for the reduc-
tion of O(8) to SU(3) is described in detail in Appendix
A. The results are given for up to six constituent gluons
in Table 1, considering only those irreps of U(8) and O(8)
which contain at least one colour zero irrep. Finally, note
that the multiplicities appearing in the reduction of U(8)
to O(8) and of O(8) to SU(3) are denoted globally by ξ
in (1).

The above classification is not applicable in its present
form to cases where more than one gluonic mode is rel-
evant. It is, however, always valid when one particular –
even non-constant – mode is considered to be dominating
at low energies, subject only to the condition that it has
spin 1, colour (1, 1) and, in view of our further considera-
tions, parity (−1).

In order to discuss the properties of the states under
parity and charge conjugation we introduce boson creation
and annihilation operators, b i†

a and b i
a, for the gluon field

A i
a, i.e. we write A i

a ∼ (b i†
a + b i

a) with a proportional-
ity factor depending on certain parameters. What we will

Table 1. Reduction of U(8) to O(8) up to six constituent
gluons taking into account only those U(8) irreps which con-
tain at least one colour scalar (the actual number of colour
scalars is indicated in the third column). Also the reduction
of U(3) via SUJ(3) to the angular momentum group SO(3)
is given, and we have indicated the corresponding values of J .
Subindices refer to multiplicities which can be distinguished by
the multiplicity index K. P and C refer to parity and charge
conjugation, respectively

U(8) (U(3)) O(8) #(0,0) SO(3) (J) P C

[2] (0000) 1 0,2 +1 +1
[4] (0000) 1 0,2,4 +1 +1
[22] (0000) 1 0,2 +1 +1
[6] (0000) 1 0,2,4,6 +1 +1
[42] (0000) 1 0,22,3,4 +1 +1
[23] (0000) 1 0 +1 +1
[3] (3000) 1 1,3 −1 −1
[5] (3000) 1 1,3,5 −1 −1
[41] (3000) 1 1,2,3,4 −1 −1
[32] (3000) 1 1,2,3 −1 −1
[13] (1110) 1 0 −1 +1
[312] (1110) 1 0,2 −1 +1
[212] (2110) 1 1 +1 −1
[412] (2110) 1 1,3 +1 −1
[321] (2110) 1 1,2 +1 −1
[22] (2200) 1 0,2 +1 +1
[42] (2200) 1 0,22,3,4 +1 +1
[321] (2200) 1 1,2 +1 +1
[23] (2200) 1 0 +1 +1
[221] (2210) 1 1 −1 −1
[312] (3110) 1 0,2 −1 −1
[6] (6000) 1 0,2,4,6 +1 +1
[42] (4200) 1 0,22,3,4 +1 +1
[412] (4110) 1 1,3 +1 −1
[32] (3300) 1 1,3 +1 −1
[23] (2220) 1 0 +1 +1

present in this section is independent of these parameters,
which will be fixed in the next section. The operators b i†

a

and b i
a satisfy the usual commutation relations.

A basis of states can be characterized unambiguously
by the quantum numbers in (1) (some of them are redun-
dant, see also below). Any such state can be obtained by
applying the pair operators

q
[J]
M

†
=
∑

a

[b†
a × b†

a][J]
M (4)

to a minimum weight state, i.e. a state with hk = ωk, k =
1, 2, 3. The notation [A × B][J]

M in (4) represents the spin
coupling of two tensors A and B to spin J [20], where in
our case J = 0, 2 due to the spin and the bosonic nature of
the gluons. Note also that the pair operators q

[J]†
M are O(8)
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scalars because of the summation over a. The conjugate
operators q

[J]
M annihilate the minimum weight states.2

A general basis state can then be decomposed as fol-
lows: ∣∣∣[h1h2h3] ξ (ω1ω2ω30), KJM

〉
=
[
P(q†)[2n1,2n2,2n3]

⊗
∣∣∣[ω1ω2ω3] ξ′ (ω1ω2ω30)

〉][h1h2h3]KJ

M
. (5)

The symbol P(q†)[2n1,2n2,2n3]K1J1
M1

represents a coupling of
(n1 + n2 + n3) gluon pair operators from (4) to the U(8)
(or U(3)) irrep [2n1, 2n2, 2n3] and to spin J1 with mul-
tiplicity index K1. Due to the commutativity of the pair
operators the Young diagram [2n1, 2n2, 2n3] must have an
even number of boxes in each row [17]. The operator P(q†)
is subsequently coupled with a minimum weight state to
the total U(8) (or U(3)) irrep [h1h2h3] and to spin J , the
U(3) (or equivalently U(8)) coupling being indicated by
⊗. This coupling is such that

N = h1 + h2 + h3 = 2(n1 + n2 + n3) + ω1 + ω2 + ω3 . (6)

It is natural to interpret the quantum number N as the
number of constituent gluons. One should, however, be
careful not to identify N with the number of the con-
stituent gluons which arise in other phemonenological
models, as discussed in Sect. 4. At any rate, (6) gives the
precise definition of N in our model.

We did not explicitly indicate in (5) the quantum num-
bers N and (p, q), which are uniquely determined by h1,
h2, h3, the latter via p = h1 −h2 and q = h2 −h3. Further-
more it is understood that the state in (5) is a singlet with
respect to the colour SU(3).3 The multiplicity label ξ is
replaced by ξ′ in the second representation in (5) because
part of the multiplicity is taken care of by the different
couplings of [2n1, 2n2, 2n3] with [ω1ω2ω3] to [h1h2h3]. The
division of the state into a coupling of (n1+n2+n3) gluon
pairs and the “rest” is related to the concept of general-
ized seniority, where a particle system can be divided into
pairs of particles coupled to colour zero and spin 0 or 2
and the rest where no pairs of these types appear. The
term “generalized” is used because seniority is normally
associated with a coupling to a total scalar.

The key point of the decomposition (5) is that the
gluon pair operators change neither parity nor charge con-
jugation, which are therefore already determined by the
minimum weight states, i.e. the ones with [h1h2h3] =
[ω1ω2ω3]. Furthermore, it turns out that the minimum

2 Together with the generators of the U(8) group these oper-
ators form the algebra of the symplectic group Sp(6, R), which,
however, will not be considered further here (see [12] and ref-
erences therein)

3 In the pure gauge theory, the gluons have to be coupled
to colour (0, 0), which is not necessarily true in the presence
of quarks. The notation in (5) can be readily extended to the
latter case

weight states carry definite parity and charge conjuga-
tion, as will be demonstrated in the following. It is due to
these facts that the O(8) irreps play a prominent rôle in
the classification of many-gluon states.

The parity of an N -gluon state is readily determined
by noting that each gluon field A i

a – and therefore each
operator b i†

a – carries parity (−1). Therefore, the parity
of a state with O(8) irrep (ω1ω2ω30) is given by

P = (−1)N = (−1)ω1+ω2+ω3 . (7)

Obtaining the charge conjugation of the states is con-
siderably more involved. The reason can be seen by consid-
ering the simple example of a one-gluon state. The prop-
erties of A i

a (and hence of b i†
a ) under charge conjugation

are deduced in [21] and turn out to be

CA i
a = ηaA i

a (no sum over a) , (8)

with

ηa =

{
−1 for a = 1, 3, 4, 6, 8
+1 for a = 2, 5, 7

(9)

in the standard representation of SU(3), where the gen-
erators are proportional to the Gell-Mann matrices. Since
one-gluon states belong to the U(8) and O(8) irreps [1] and
(1000), respectively, we have an example of an O(8) irrep
lacking a definite charge conjugation. As we will show in
the sequel one can, contrary to this observation for one-
gluon states, associate definite charge conjugations with
all colour-zero states.

In order to see that, we have to construct the states
from so-called elementary permissible diagrams
(epds) [22]. An epd is, in our case, a minimum weight
state as considered before, coupled to colour zero and def-
inite spin, which is elementary in the sense that it cannot
be decomposed into other couplings. It will be denoted by

(N, [ω1ω2ω3], J) = [b† ⊗ · · · ⊗ b†][ω1ω2ω3]J
M=J , (10)

where N = ω1 + ω2 + ω3 and the O(8) irrep is (ω1ω2ω30).
Note that we always couple to M = J , which implies that
a product of two epds, say (N, [h1h2h3], J)(N ′, [h′

1h
′
2h

′
3],

J ′), represents a state with spin J + J ′. However, such a
product of epds has still to be projected onto a definite
U(3) (or equivalently U(8)) irrep, meaning that the epds
are defined here with respect to the maximum weight of
SO(3) and not of U(3) (U(8)).

Any minimum weight state can be represented by
products of all possible epds. Including the pair opera-
tors of (4) (with M = J) in the list of epds, we can then
via (5) construct any state with the quantum numbers
of (1) from the coupling of epds.4 There exist systematic
procedures to determine the total number of epds, and
the application of these general methods to the case at
hand (including states with colour which are important in

4 As a detailed example for the construction of states with
the help of epds see the discussion of the five-dimensional har-
monic oscillator in [23]
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the presence of quarks) is presently worked out [24]. How-
ever, for the time being, we will adopt a more pedestrian
approach which is completely satisfactory in the case of
small gluon numbers. It should be noticed that in general
the choice of the set of epds is not unique being somewhat
analogous to the choice of a basis for a vector space.

The epds with up to three constituent gluons are (sum-
mation over repeated indices is understood)

(2, [2], J1) = [b†
a × b†

a][J1]
J1

(3, [3], J2) = dabc

[
[b†

a × b†
b]

[2] × b†
c

][J2]

J2

(3, [13], J3) = fabc

[
[b†

a × b†
b]

[1] × b†
c

][J3]

J3

, (11)

the first one being the pair operator (4), while the others
are minimum weight states in the sense defined before.
The spins denoted by Jk are limited to the values J1 =
0, 2, J2 = 1, 3 and J3 = 0. A complete list of epds with
up to six gluons, as well as the decomposition of some
minimum weight states with seven or eight gluons to be
used in the discussion of the glueball spectrum, can be
found in Appendix B.

We can now use the decomposition of the states into
epds to determine their charge conjugation, using the fact
that the epds are charge conjugation eigenstates. For ex-
ample, by construction the epd of two gluons in (11) has
charge conjugation C = +1. For the epds with three glu-
ons we have for the symmetric coupling C = −1 and for
the antisymmetric coupling C = +1, which can be read-
ily verified taking into acount the combinations of (a, b, c)
which appear in these couplings and using the list in (9).
In general, as shown in Appendix C, the total charge con-
jugation is simply given by

C = (−1)nd , (12)

where nd is the number of d-symbols appearing in the cou-
pling. Using this fact and the list of epds in Appendix B
we can deduce the charge conjugation of all states con-
structed via (5) from minimum weight states with up to
six gluons. The results are given in Table 1.

3 An effective hamiltonian for QCD

In this section we will motivate an ansatz for an effective
Hamiltonian for purely gluonic QCD at low energies. The
Hamilton density in the temporal gauge is of the form

H = −1
2

∑
i,a

(∂0A
i
a)2 + V(A) , (13)

where the first term is the kinetic energy density and the
second is the potential which includes everthing else, such
as (∇ × Aa)2.

To obtain the effective action of the quantum theory
one must integrate over all possible physically inequivalent
configurations of the gauge field. This is, except in certain

special cases, impossible to do exactly. The most popu-
lar approximation technique is perturbation theory, how-
ever, for a discussion of QCD at low energies this simply
will not do. Another possible approximation, as mentioned
previously, is of Born-Oppenheimer type [8] wherein one
tries to integrate out “fast” (short wavelength) fluctua-
tions thereby leaving an effective theory for the “slow”
(long wavelength) modes. Here, we make an ansatz for the
low-energy effective Hamiltonian, taking it as a function
of spatially constant gauge fields only. Given the transla-
tion invariance of the QCD vacuum, this is not physically
unreasonable. The basic assumption behind this ansatz is
that the dynamics of the constant modes alone can give us
information about the glueball spectrum, i.e. the excited
states of the theory, although obviously the inner struc-
ture of the states cannot be described by constant modes.
As was shown in the work of Lüscher, van Baal and Koller
[8], this assumption is correct for the system located in-
side a box with periodic boundary conditions and a size
of up to 0.7 fm (approximately).

After having integrated over all non-constant modes
our general ansatz for the quantized effective Hamiltonian
is

Heff = − 1
2B%

∑
i,a

∂2

(∂A i
a )2

+ Veff (A) , (14)

where the effective potential Veff is a complicated func-
tion of A i

a that will be modelled by a simple ansatz further
below. The approximation effected in (14) consists in ne-
glecting higher derivatives with respect to A, as well as
terms mixing derivatives with powers of A. This adiabatic
approximation has been justified in the case of a finite
volume and to one-loop order [8], and here we will simply
assume that for our purposes the same approximation can
also be applied to the more general case. The constant B%

is a wave function renormalization, which we will treat as
an adjustable parameter.

After choosing the temporal gauge and integrating out
all non-constant modes there is still a residual gauge sym-
metry left in (14), namely the invariance under spatially
constant, i.e. global (and time-independent) gauge trans-
formations. We hence impose on the physical states the
condition

GaΨphys(A) = 0 , (15)

where the Ga are the generators of global gauge transfor-
mations. Equation (15) is equivalent to the statement that
physical states have no colour, in which form the condi-
tion was imposed on the many-gluon states considered in
the previous section. The consistency of the present gauge
fixing procedure with the integration over all non-constant
modes was shown in [8].

We will now change variables. The transformation is
chosen such that part of the new variables is intimately
related to the gluon pairs introduced in the previous sec-
tion. The interpretation of these variables will be given
below. Explicitly the transformation is given by [12]

A i
a =

3∑
k=1

%kD13
ki (θ)∆

18
5+k,a(φ) . (16)
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where the constant modes of the vector potential A i
a de-

pend on the spatial indices (i = 1, 2, 3) and the colour
indices (a = 1, 2, ..., 8). D13

ki is the rotation matrix in
the spatial three-dimensional space with cartesian com-
ponents and ∆18

5+k,a is the corresponding rotation matrix
in the colour space of dimension 8. Of the latter only the
last three rows appear. The angles φab for rotations in
colour space can be chosen in such a way that only 18 an-
gles appear in (16). Together with the three angles θij for
spatial rotations and the three %k we then have (formally)
24 degrees of freedom as is the case for the A i

a on the l.h.s.
of (16). Eight of the angles φab correspond to global gauge
transformations, hence the generators Ga in (15) can be
identified with the angular momentum operators for the
corresponding rotations. The condition (15) then simply
shows that physical states are independent of these eight
angles, thereby effectively reducing the number of degrees
of freedom to 2 × 8, as might have been anticipated.

Transformations similar to (16) have been used in
other areas of physics [11,12] and also in the work of van
Baal and Koller [8]. In both cases the coordinates were
taken to be space independent as in (16). However, (16)
can be readily extended to the more general case where
the coordinates include space (and time) dependence. In
any case, the interpretation of this coordinate transforma-
tion given below is the same irrespective of whether the
coordinates are space dependent or not.

We will now consider the interpretation of these new
variables. We first define the composite field

qij =
∑

a

A i
aA j

a

=
∑

k

D13
ki (θ)%

2
kD13

kj(θ) . (17)

Equation (17) gives the rotation in three-dimensional
space of the matrix (qij) into a system in which the ma-
trix is diagonal, which will be called the “intrinsic system”.
The matrix (qij) has both monopole and quadrupole com-
ponents which are obtained by simply coupling to the ap-
propriate spin, i.e.

q
[J]
M =

∑
i,j

(1i, 1j | JM) qij , (18)

where J = 0, 2 indicates the spin and (1i, 1j | JM) is a
Clebsch-Gordan coefficient coupling two cartesian vectors
to a spherical tensor of spin J . Equation (18) represents
of course the analogue to the gluon pair operators q

[J]†
M of

the previous section (see (4)). For J = 0,

q
[0]
0 =

1√
3

∑
i,a

(A i
a)2 =

1√
3

∑
k

%2
k ≡ %2

√
3

(19)

gives the square of the intensity of the vector field. The
spin 2 part describes the quadrupole distribution of the
intensity of the vector field. Thus the %k carry the infor-
mation about the monopole and quadrupole distribution.
In (16) and (17) the angles θij give the orientation of the

intrinsic system with respect to the laboratory system and
can be defined in many different ways. For instance, in-
stead of the rotation angles θij in two-dimensional planes
one could just use Euler angles. The angles φab describe
analogous rotations in colour space.

The monopole-quadrupole tensor (qij), being
quadratic in the gauge field, can only describe excitations
with an even number of gluons. In addition, by the sum-
mation over colour indices in (17), the variables and thus
the excitations they describe do not change parity nor
charge conjugation. Of course, “non-pair” excitations can
still be described via (16) and will be classified by O(8)
irreps.

In summary, our conjecture is that the variables %k,
φab and θij represent effective degrees of freedom that
will be useful in describing the collective behaviour of the
gluon field, in the same way as in nuclear physics analo-
gous variables describe the collective rotational and vibra-
tional modes of the nucleus. We believe that a generaliza-
tion of these variables to include space-time dependence
could also be useful in QCD.

As described in [12], instead of the variables %k one
can use %, b and c which are related to the former by

%2
k =

%2

3

[
1 + 2b cos

(
c − 2π

3
k

)]
, (20)

where k = 1, 2, 3. The parameter b gives the absolute de-
formation and c its deviation from axial symmetry. There
are restrictions however [12,25]: Firstly, the sector from
c = 0 to π/3 already represents all possible physically dif-
ferent situations. The other sectors (six in total) can be
mapped bijectively to the one described [25]. The Jaco-
bian of the transformation (20) becomes singular on the
boundaries between different sectors. Secondly, the restric-
tion that the left-hand side of (20) be positive imposes a
c-dependent upper limit upon the variable b.

It will turn out to be even more convenient to replace
b by the variable β related to it via [12]

1 + 2
(

β

σ

)2

=
1 − b2

1 − 3b2 + 2b3 cos(3c)
(21)

with the scale factor σ defined in (22) below. The range of
β is from 0 to ∞ (see [25]). For b or (β/σ) small we have
β/σ ≈ b.

Now we will rewrite the Hamiltonian of (14) in terms
of the new variables of (16)–(21). For the time being we
will concentrate on the kinetic term T = Heff − Veff . In
effect, for this case the transformation to the new variables
has already been performed in [12] where the number A,
referring to the number of nucleons, has to be replaced by
9 and in particular the orthogonal group O(A−1) becomes
O(8), otherwise nothing changes.

We will in the following briefly outline the procedure
and give the main definitions and results. In the first step
the kinetic term T is rewritten in terms of the variables %k

(k = 1, 2, 3) and the components of the spin operator Jk

in the intrinsic system associated with the angles θij . T
also depends on the generators L5+k1,5+k2 (k1, k2 = 1, 2, 3)
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which form an SO(3) subgroup of O(8). As shown in [12]
and [26], the matrix elements of the generators approach
for large

σ2 = ω1 + ω2 + ω3 + 6 (22)

the matrix elements of the generators Lk (k = 1, 2, 3)
of the SO(3)′ subgroup of an U(3)′ group in the irrep
[ω1ω2ω3]. The primes indicate that a contraction proce-
dure [27] was used in terms of the expansion parame-
ter (1/σ2). The [ω1ω2ω3] irrep of U(3)′ contains the irrep
(λ = ω1−ω2, µ = ω2−ω3) of its SU(3)′ subgroup, and the
latter can be reduced to SO(3)′ by using the rules given
in (2) and (3). We will identify the components of L with
angular momentum operators later on.

The volume element in terms of the new variables is

(%2
1 − %2

2)(%
2
1 − %2

3)(%
2
2 − %2

3)(%1%2%3)5d%1d%2d%3dΩθdΩφ ,
(23)

where dΩθ and dΩφ refer to the volume element of the
respective angles. Their explicit form depends on the spe-
cific angles chosen (Euler or others). We have also chosen
%1 ≥ %2 ≥ %3 corresponding to the sector in the (b, c)-
plane with 0 ≤ c ≤ π/3 in order to avoid ambiguities in
the choice of the intrinsic system.

Next, we change the volume element via the transfor-
mation

Φ = (%1%2%3)5/2(%2
1 + %2

2 + %2
3)

2Ψ (24)

to the new states Φ in the Schrödinger picture. The change
of volume element is such that for small β/σ ≈ b the new
volume element takes the form(

β

σ

)4

sin(3c) d% dβ dc dΩθ dΩφ (25)

as given in [25], neglecting corrections to the next order
in (β/σ).

Implementing these changes, the kinetic term in the
effective Hamiltonian subsequently acquires the form

T =
1

2B%

(
− ∂2

∂%2 +
R2

%2

)
, (26)

where R2 is an operator which contains linear and
quadratic derivatives with respect to the variables β and c.
It is also a function of the spin operators Jk in the intrinsic
system and of the last three generators of the O(8) group,
replaced by Lk after the contraction discussed above. Ad-
ditionally, it depends on combinations of Casimir opera-
tors of the O(8) group and of its subgroups O(7), O(6)
and O(5) in the canonical chain.

In [12] an expansion is made in powers of the param-
eter (1/σ2) defined in (22). In the case of [12] this ex-
pansion parameter is always very small. In the case at
hand, where it starts from 1/6 and decreases with larger
ωk (k = 1, 2, 3), it is not too small, however one would
expect the expansion not to be too bad. Actually, we will
expand not only in powers of (1/σ2) but also in powers
of (β/σ), leading to the contributions summarized by the
formulas (5.6) to (5.11) of [12]. However, it is necessary to
keep the term given by (5.11) in this reference (R2

2 below)

because it can be, in our case, of the same order as σ2. We
thus arrive at the following expression for the R2 operator
of (26):

R2 = R2
1 + R2

2 , (27)

where

R2
1 ≈ 2σ2

[
− 1

β4

∂

∂β
β4 ∂

∂β
− 1

β2 sin(3c)
∂

∂c
sin(3c)

∂

∂c

+
3∑

k=1

L2
k

2β2 sin2(c − 2πk/3)

]

+

(
σ4 − 9

4

)(
1 + 2

(
β

σ

)2
)

+ 12 (28)

and

R2
2 ≈ 2 C2(λ, µ) − 3

3∑
k=1

L2
k (29)

with

Lk = Jk + Lk

C2(λ, µ) = λ2 + λµ + µ2 + 3(λ + µ)
λ = ω1 − ω2, µ = ω2 − ω3 , (30)

the ωk being the quantum numbers of the O(8) irrep.
The above is a good approximation in the case that

(β/σ) is very small. However, as this is not entirely the
case we will modify the expression such that the contribu-
tions from higher orders in (β/σ) are taken into account
via a redefinition of the interaction parameters (a pro-
cedure commonly used in the collective model of nuclei
[25]). At this point our model begins to look even more
phenomenological, similar to a Landau-Ginzburg ansatz,
where the theory contains parameters which have to be
adjusted to some kind of “experiment”, in our case to lat-
tice calculations. Nevertheless, the kinematical structure
is maintained with the hope of learning something about
the spectral structure of pure gluonic QCD.

In order to illustrate the parameter redefinition we con-
sider the term in square brackets in (28). It can immedi-
ately be identified with the kinetic energy associated with
a quadrupole degree of freedom as given in [25], where the
spin operators Jk are replaced by Lk = Jk + Lk.

In principle, the full kinetic term (26) (after the re-
duction in terms of the parameter (1/σ2)) can be written
down: it turns out still to be quadratic in the derivatives,
with the coefficients given as power series in (β/σ). This
is extensively discussed in [25]. It is straightforward but
cumbersome to obtain the corresponding coefficients of
these higher terms in the kinetic energy. A much simpler
procedure takes the higher contributions into account by
redefining the coefficients of the lowest-order terms. In the
example considered above, we would multiply the square
bracket in (28) by a parameter (1/B2), to be determined
“experimentally”. This procedure is sensible as long as
the expansion parameter (β/σ) does not vary over a wide
range [25].
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If we add to the terms in square brackets in (28) a con-
tribution proportional to β2, we obtain the Hamiltonian
of a five-dimensional harmonic oscillator. In fact, such a
term is available in (28), and we multiply it – following
the above philosophy – by a factor C2 (there is another
term relatively suppressed by a factor (1/σ4), which we
neglect). We can then write the whole expression as the
number operator N2 of the quadrupole bosons times a
constant depending on (C2/B2), plus the zero-point en-
ergy.

Taking into account all the terms in (28) and (29),
the operator R2 is given by a linear combination of the
harmonic oscillator of the quadrupole degree of freedom
discussed above, the eigenvalue C2 of the Casimir opera-
tor of the SU(3)′ group, the L2 operator of the SO(3)′
group contained in SU(3)′, a term proportional to σ4 and
a constant. Therefore, as an ansatz for R2 we propose

R2 = 4
√

C2

B2
σ2N2 + k1(σ4 − 36) + k2C2(λ, µ)

+k3

3∑
k=1

L2
k + k4 − 1

4
. (31)

For convenience we have absorbed the zero-point energy
of the harmonic oscillator and a term (36k1 + 1/4), in the
parameter k4 multiplying the constant term.

Now we turn to the potential term Veff in (14). In
general, Veff will be a complicated function of the three
fundamental tensors I1 = %2, I2 =

√
1/5 β2 and I3 =

−√2/35 β3 cos(3c) (see [25]), and also of those angles φab

which are not excluded by gauge invariance. In keeping
with the expansion in powers of (β/σ), we approximate
Veff by a function of %2 only. We also neglect any depen-
dence on the angles φab which has to be considered as an
ad hoc ansatz in the present context. There is, however,
some motivation for this omission from the perturbative
expressions calculated in [8]. We will further approximate
the potential in the vicinity of its minimum by a linear
combination of the terms 1/%2 and %2, where the former
can be assimilated into R2 via a redefinition of the con-
stant k4 in (31). In fact, all the contributions to Veff which
happen to have the same structure as one of the terms in
R2, can be taken into account by redefining the corre-
sponding parameters. The %2 term in the potential can
be interpreted as a gluon mass term as is clear from (19).
We remark that, despite this mass term, the number of
degrees of freedom of the spatially constant gluon field
corresponds to transverse gluons due to the remnant of
Gauss’ law (15).

We then arrive at the final form of our ansatz for the
effective Hamiltonian,

Heff = − 1
2B%

∂2

∂%2 +
R2

2B%%2 +
C%

2
%2 , (32)

with R2 as in (31) and a new parameter C% from the
modelling of the effective potential term. One of the main
reasons behind the specific approximations made for the
kinetic and effective potential terms is, of course, that

the resulting Hamiltonian (32) is separable and analyti-
cally solvable. R2 will be diagonalized simultaneously with
Heff , hence we can replace R2 by its eigenvalue R2

χ, where
χ refers to all quantum numbers which appear in this
eigenvalue. Heff then reduces to the Hamiltonian of a
harmonic oscillator in % with continuous angular momen-
tum, and the spectrum is

Eχ
n%

=

√
C%

B%

(
2n% + ν + 4

)
(33)

with n% = 0, 1, 2, . . . and

ν =

√
R2

χ +
1
4

− 3 . (34)

Plugging in the eigenvalues for the different operators
appearing in R2 in (31), we obtain the more explicit ex-
pression

E
(ω1ω2ω3),L
n%,N2

=

√
C%

B%

{
2n% +

[
4
√

C2

B2
σ2N2

+k1(ω1 + ω2 + ω3)(ω1 + ω2 + ω3 + 12)
+ k2(λ2 + λµ + µ2 + 3λ + 3µ)

+k3L(L + 1) + k4

] 1
2

−
√

k4

}
, (35)

where N2 is the quantum number of the five-dimensional
harmonic oscillator, hence N2 = 0, 1, 2, . . .. As we are in-
terested only in energy differences, we have subtracted in
(35) the eigenvalue for the vacuum, which has the quan-
tum numbers n% = 0, N2 = 0 and ωk = 0 (k = 1, 2, 3),
consequently λ = µ = L = 0 from (2), (3) and (30). We
see explicitly from (35) that k4 is constrained to take non-
negative values.

In our ansatz we have introduced a total of eight in-
dependent parameters which have to be adjusted in order
that Heff in (32) approximate as closely as possible the
exact effective Hamiltonian. Lacking knowledge of the lat-
ter, we will use information from lattice simulations for the
same purpose. In the next section, we will determine the
values of the six parameter combinations√

C%

B%
,

√
C2

B2
, k1, k2, k3, k4 , (36)

appearing in (35), by fitting the spectrum of Heff to the
glueball spectrum as measured in quenched lattice QCD.

Finally, we will give explicit expressions for the eigen-
states of Heff . Following [12], we have

|n%N2, ΛtL, JM, ΩL, (ω1ω2ω3)δ 〉 =

Fν
n%

(%)FΛ
(N2−Λ)/2(β)

∑
K′

ΦΛtL
K′ (c)

×
∑
K,K

(JK,LK | LK ′)DJ
KM (θ)D(ω1ω2ω3)

ΩLK;δ(0,0)(φ) . (37)
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Fν
n%

are the eigenfunctions of the one-dimensional har-
monic oscillator in % given explicitly by

Fν
n%

(%) =
[
2(B%C%)2+ν/2 n%!

Γ (n% + ν + 4)

] 1
2

%ν+7/2L(ν+3)
n%

×
(√

B%C% %2
)

e−
√

B%C% %2/2 , (38)

where L
(α)
n is a Laguerre polynomial and ν was defined in

(34). The function F in (37) is the radial part of the five-
dimensional harmonic oscillator and Φ is the part that
depends on c. Both are given in [23]. DJ

KM represents
the Wigner D-function [20] whilst the other D-function is
the representation matrix of O(8) in the approximation
of large σ2. Λ has the meaning of seniority for the five-
dimensional harmonic oscillator and gives the number of
J = 2 gluon pairs not coupled to spin zero. The angular
momentum L is restricted to the values allowed for a five-
dimensional harmonic oscillator [23], which in particular
has no L = 1 state. The parameter t is a multiplicity in-
dex appearing in the classification of the five-dimensional
oscillator and Ω plays the rôle of the K in (2) and (3)
for the reduction of SU(3)′ to SO(3)′. Finally, δ is a fur-
ther multiplicity index in the reduction of O(8) to SU(3)
colour.

The basis given in (37) is one of the possible realiza-
tions of the general expression given in (5). In principle the
direct relation could be found by using Dragt’s theorem
[28] which relates the representation of states in terms
of boson creation operators to the coordinate represen-
tation. We can in particular identify excitations of the
one-dimensional oscillator (in %) and the five-dimensional
oscillator (in β, c) with gluon pairs created by the oper-
ators in (4). The relation is given through (17)–(21) and
involves the parameters B%, C% and B2, C2, respectively.
The total angular momentum of the pairs with quadrupole
momentum is given by L (the other pairs do not con-
tribute), where the allowed values of L correspond to the
fact that these gluon pairs represent identical bosons. The
minimum weight states in (5) transforming according to
a certain O(8) irrep (ω1ω2ω30), are described in (37) by
the corresponding O(8) representation matrix. We can in-
terprete the value of L as the angular momentum of these
states, as is evident from considering a state with L = 0,
where J = L by the Clebsch-Gordan coefficient in (37). In
general, the total angular momentum J of a state arises
as the (angular momentum) sum of L stemming from the
J = 2 pairs and L originating from the minimum weight
state. Interpreting the dependence of the energy in (35)
on the quantum numbers of the states, the tensor gluon
pairs and the unpaired gluons (described by the minimum
weight states) interact strongly, while the scalar gluon
pairs appear in our approximation as free particles.

Using the basis (37), we can calculate the expectation
value of %2 which turns out to be

〈%2〉 =
1

C%
Eχ

n%
, (39)

with Eχ
n%

taken from (33), i.e. including the vacuum en-
ergy. Equation (39) shows that the energy of a state is

determined exclusively by the square of the intensity of
the gluon field. Let us emphasize again that our model
permits us only to calculate the spatial field distribution
for zero-momentum states of glueballs, therefore we have
no information about the internal structure of the states.

We are confident that the Hamiltonian presented in
(32) can serve as a first approximation to the exact effec-
tive Hamiltonian. In future developments the basis (37)
will then play the important rôle of a perturbative basis
in which to diagonalize the improved effective Hamilto-
nian. However, as there is at present no quantitative way
to link our model to fundamental pure QCD it cannot be
regarded as more than an ansatz somewhat in the spirit
of a Landau-Ginzburg expansion of the free energy in sta-
tistical physics. We would claim that it is more concretely
rooted in the fundamental microscopic theory than the
former as our order parameter is directly related to the
fundamental field content of QCD whereas, for example
in superconductivity, the Landau-Ginzburg ansatz does
not relate the scalar order parameter to the underlying
electron degrees of freedom.

4 The glueball spectrum

The values of the parameters in (35) will be determined by
adjusting the spectrum of our model to the masses of the
16 glueball states given by the lattice calculation of [9].
For the three lowest-lying states we use the values cited in
[29] (rather than [9]) obtained as weighted averages over
several lattice measurements done by different groups (see
the references in [29]). The 0−− glueball state comes with a
huge error in [9], so we decided to take the value from [30]
instead, where a lattice Hamiltonian method was used.
Finally, we use some of the (preliminary) values of [10]
for the fit, which result from a new generation of glueball
measurements on anisotropic lattices (see also [31]). We
have employed the CERN-MINUIT fitting routine [32] in
order to obtain the best overall agreement. The resulting
fit is given by the following formula (cf. (35))

E
(ω1ω2ω3),L
n%,N2

= 0.805 GeV

×
{

2n% +
[
1.17σ2N2 + 0.165(ω1 + ω2 + ω3)

×(ω1 + ω2 + ω3 + 12) + 0.877(λ2 + λµ + µ2 + 3λ + 3µ)

× + 0.028L(L + 1)
] 1

2
}

. (40)

Observe that the best value for the parameter k4 is zero,
so effectively we have only used five parameters. Note fur-
thermore that the dependence on J arises only indirectly
through N2, L and the restriction given by the SU(2)
Clebsch-Gordan coefficients in (37).

In Table 2 we list the results of the fit for the states
considered in [9]. For states marked with a cross only up-
per limits have been given in [9]. Before commenting on
the quantitative aspects of the fits, however, let us em-
phasize that the overall ordering of glueball states is to a
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Table 2. Glueball masses calculated within the model compared to lattice cal-
culations. The values of the parameters used in our model are given in (40). See
Sects. 2 and 3 for our classification of the glueball states displayed in the first
four columns. Columns five and six give the usual JPC classification along with
the value of the mass determined from our model Hamiltonian. The lattice results
which have been used to fit the parameters are given in the last two columns.
While the next to last column cites the best confirmed values currently available,
the last column refers to preliminary results of a new generation of glueball calcu-
lations on anisotropic lattices (we did not include the value for the 0++ glueball
due to problems with this specific state in the new method). The errors displayed
refer exclusively to statistical errors, while there might be an additional overall
variation in the scale. In particular, the scales used in the last two columns may
slightly differ from one another. Values which are only upper limits, are marked
by a cross. Some of the lattice values have actually been read off the figures in the
respective publications, hence the data given might be erroneous in the last digit

(ω1ω2ω30) L (λ, µ) n% N2 JPC mass lattice [10]
[GeV] [Ref.] (prelim.)

(0000) 0 (0,0) 1 0 0++ 1.61 1.61±.03 [29] –
(0000) 0 (0,0) 0 1 2++ 2.13 2.23±.22 [29] 2.39±.01
(0000) 0 (0,0) 0 3 3++ 3.69 3.92±.48 [9] 3.69±.04
(2200) 2 (0,2) 0 1 1++ 4.50 3.96±.31 [9] 4.12±.05
(1110) 0 (0,0) 0 0 0−+ 2.19 2.23±.37 [29] 2.59±.03
(1110) 0 (0,0) 0 1 2−+ 3.41 3.01±.18 [9] 3.07±.02
(3220) 1 (1,0) 0 0 1−+ 4.07 × 3.71±.39 [9] 4.18±.03
(1110) 0 (0,0) 0 3 3−+ 5.03 × 5.83±.66 [9] 4.67±.05
(2110) 1 (1,0) 0 0 1+− 3.03 2.90±.26 [9] 2.94±.02
(2110) 1 (1,0) 0 1 2+− 4.09 3.89±.66 [9] 4.10±.04
(2110) 1 (1,0) 0 1 3+− 4.09 × 6.18±.89 [9] 3.54±.02
(4220) 0 (2,0) 0 0 0+− 4.77 × 2.99±.75 [9] 4.74±.05
(2210) 1 (0,1) 0 0 1−− 3.38 4.36±.48 [9] 3.85±.04
(3110) 0 (2,0) 0 0 0−− 3.84 3.93±.48 [30] 4.94±.05
(3110) 2 (2,0) 0 0 2−− 3.86 3.94±.35 [9] 3.93±.02
(3000) 3 (3,0) 0 0 3−− 3.91 × 5.74±.89 [9] 4.13±.08

large extent independent of the choice of the model Hamil-
tonian and relies only on the assumption that the num-
ber of constituent gluons is approximately a good quan-
tum number and that more gluons correspond to higher
energy. Of course, it is not clear a priori that the con-
cept of a constituent gluon is a sensible one. However,
in our approximation the quantity N = h1 + h2 + h3 =
2(n% + N2) + ω1 + ω2 + ω3 is a good quantum number
and can be interpreted as the number of constituent glu-
ons. It should be appreciated that the level ordering of
the glueball spectrum does not follow any easily recog-
nizable pattern, as was already stressed in [9]. Using the
above “minimal” assumptions, however, we already obtain
good agreement with the ordering observed on the lattice.
The two states that come out relatively too low, 1−− and
3−−, will be shifted upwards by large corrections stem-
ming from the Casimir C2(λ, µ) of the SU(3)′ subgroup of
the U(3)′ group related to O(8) (discussed in the previous
section). Further below we will compare our results with
those of other effective models, such as the MIT bag or
the flux-tube model.

Let us now proceed to a more quantitative compari-
son of our results with the lattice measurements. It must
be noted that the overall agreement is surprisingly good,
considering the simple-mindedness of our model. The most
significant deviation of our values from the results of [9]
occurs for the 0+− state. However, the statistical error of
the lattice measurement is probably too large for this dis-
crepancy to be taken seriously. Furthermore, our value is
in excellent agreement with the more recent calculation of
[10]. As far as the latter is concerned, the statistical errors
given in [10] are remarkably small, so if they are taken se-
riously, deviations from our values are more clearcut in
this case. There is, however, an uncertainty in the overall
energy scale for the measurements (not included in the er-
rors cited here), so there might be a proportionality factor
involved when going from one set of lattice measurements
to another. Comparing our results to those of [10] we find
appreciable deviations for the 3+− and 1−− states, but
most importantly for the 0−− where the deviation is twice
as large as in all other cases. Our value is however in excel-
lent agreement with the central value given in [30] (after
normalizing to the mass of the 0++ according to [29]).
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Fig. 1. Comparison of our predictions and current “best values” for the glueball masses as given in Table 2 (columns six and
seven), arranged according to their PC eigenvalues. Our results are indicated by solid lines, while the lattice values, including
statistical errors (one-sigma deviations), are represented by grey bars. Light grey bars indicate upper limits. More than two-
sigma deviations occur for the mass of the 1++ versus our prediction of the 4++ (see the discussion in Sect. 4) and for the 0+−,
where our value is however in excellent agreement with the data of [10] (see Table 2)

Of course, deviations from our results are to be ex-
pected, since our model can only be considered as a first
approximation to the exact effective Hamiltonian obtained
from QCD by integrating out all non-constant modes. In
particular, the form of the potential term (see the dis-
cussion preceding (32)) is merely guessed at. As a con-
sequence, one expects the degeneracy of several states in
our model to be lifted by the correponding corrections.
The good qualitative agreement with lattice results, how-
ever, leads one to believe that those corrections are not so
large as to render our approximation meaningless.

In Table 3 we have gathered the predictions from our
model for states that may be accessible to future lattice
measurements. Included are three excited states that have

already been measured on the lattice [10], the results be-
ing in good agreement with our predictions. On a (hy-
per)cubic lattice one has to consider that rotational sym-
metry is broken down to invariance under the cubic group
O. There exist only five irreps under spatial “rotations”,
termed A1, A2, E, T1 and T2. Consequently, the identifica-
tion of a state on the lattice with a state in the continuum
having angular momentum J is ambiguous and relies par-
tially on the assumption that glueballs with higher J are
heavier than those with smaller J , an assumption that is
obviously not always fulfilled. Tables listing the O irreps
contained in a given SO(3) irrep are available for example
in [33].
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(ω1ω2ω30)
︸ ︷︷ ︸

(0000) (2200) (2220) (4200)
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5

m[GeV]

possible states with 8 or 10 unpaired constituent gluons

(n% = 0)

J = 2

0, 2,4

0, 2,3, 4, 6

0, 22, 42, 5, 6, 8

0, 22, 3, 42, 5, 62, 7, 8, 10

(n% = 1)

J = 0

2

0, 2, 4

(n% = 2, 3)

0

0

0

2

2

0,1, 2, 3, 4

0

2

0
0 2 3 4

2

Fig. 2. Our prediction for the complete glueball spectrum with PC = ++ below 5.08 GeV, using the parameters in (40).
Note how dense the spectrum is in comparison to what one would see on a lattice (Table 3). States listed in Table 2 and
Fig. 1 are marked by bold face letters. The lowest-lying state is, of course, the vacuum (not indicated in the figure) which has
(ω1ω2ω30) = (0000), (λ, µ) = (0, 0), L = 0 and n% = N2 = 0 and hence JPC = 0++ and whose energy has been set to zero.
Above 5.08 Gev, there are possible states with at least 8 unpaired constituent gluons (ω1 +ω2 +ω3 ≥ 8). The charge conjugation
eigenvalues C of these states are as yet unknown

State-of-the-art lattice calculations (on anisotropic lat-
tices with improved actions) are able to determine the en-
ergies of the ground states and some first excited states for
any given O irrep [10]. Table 3 gives a list of our predic-
tions for the energies of the first and second excited states
for all RPC (R an irrep of O). Due to the degeneracy of
several states in our model, to be lifted by the inclusion of
corrections to our ansatz for the effective Hamiltonian, the
degree of excitation of a certain state (especially on the
lattice) cannot always be determined from our mass esti-
mates. In fact, these corrections together with mass shifts
due to possible mixing of different states with the same
JPC may change the sequence of states substantially in
energy regions with a high density of states (see Figs. 2–
4). Our predictions for the level ordering in these regions
should be taken with a grain of salt.

We would like to point out that within our model we
obtain a 4++ state lying considerably lower in mass than
the 1++. Given that both J = 1 and J = 4 contain an
irrep T1 of the cubic group, on the lattice the 4++ would
have been mistaken, had it indeed been found, for a 1++

according to the above-mentioned rule of thumb. Hence
our value differs by more than two standard deviations
from the result of [9], the latter being consistent with the
more recent calculation in [10].

The states that are marked by an asterisk in Table 3
are only accessible on the lattice by measuring second ex-
cited states in the corresponding RPC sector, a technical
challenge which has as yet not been met. More easily ac-
cessible states, to be compared with our predictions, are
T−+∗

1 , A+−∗
2 , E+−∗, A−−∗

2 , E−−∗ and T−−∗
1 corresponding

to the continuum states 4−+, 3+−∗, 2+−∗, 3−−∗, 2−−∗ and
1−−∗, respectively, with the predicted massses given in
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(2110) (3300) (4110) (3320) (4220)

PC = +−
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possible further states with 8 or 10 unpaired constituent gluons

J = 1

1,2,3

1

12, 2, 32, 4, 5

1

3

1

3

1
02

22

Fig. 3. As in Fig. 2, but for PC = +−. Note that the states with (ω1ω2ω30) = (3320) and (4220) have 8 unpaired constituent
gluons. In these particular cases we have determined the charge conjugation to be C = −1

Table 3. We should also mention that there are particu-
lar problems with the mass determination of 0++ states
on anisotropic lattices, which is why we did not cite the
corresponding results in Tables 2 and 3. Ignoring these
difficulties, the values given by the collaboration of [10,
31] are (1.63± .03) GeV for the 0++ and (2.84± .04) GeV
for the 0++∗. While the first value is consistent with the
one given in Table 2 from [29], the second one is in good
agreement with our prediction.

In Fig. 2 we graphically compare our fit with the val-
ues for the glueball masses as cited in [9,29,30]. The latter
are represented by grey bars including the one-sigma de-
viation for the statistical errors. Light grey bars denote
upper limits to the masses only. The other figures show
our predictions for the full glueball spectrum up to a cer-
tain energy, obtained by using the parameters determined
before. The states are ordered with respect to their PC
eigenvalues and the O(8) irreps.

The general prediction then is that the spectrum is
much denser than seen on the lattice, in particular in the

sector PC = ++. Notice, however, that there is no contra-
diction with the lattice results due to the fact that on the
lattice, with few exceptions, only the lowest-lying state
in a given representation RPC is measured. A potential
problem is the low-lying 4++ as discussed above.

Let us now discuss the present limits in energy for our
prediction of the spectrum, represented by the light grey
bars in Figs. 2–4. While the parity of any state is simply
given by P = (−1)ω1+ω2+ω3 according to (7), we are at
present lacking a systematic determination of the charge
conjugation eigenvalues C for states with more than six
unpaired gluons, i.e. ω1 + ω2 + ω3 > 6 (there is work in
progress on this matter [24]). We will consider first the
sectors with positive parity P = +1 and thus states with
an even number of constituent gluons. Above 5.08 Gev,
there are possible states with at least eight unpaired con-
stituent gluons, the charge conjugation eigenvalues C of
which are as yet undetermined. We do know, however, that
the charge conjugation of states with O(8) irreps (3320)
and (4220) is C = −1 (see Appendix B). The lowest-lying
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(1110) (3220) (3000) (2210) (3110)

PC = −+ PC = −−
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possible further states with 7 or 9 unpaired constituent gluons

J = 0

2

0

0, 2, 4

0, 2,3, 4, 6

1

1

3

1

1, 2, 3

0

2

Fig. 4. As in Fig. 2, for states with PC = −+ and −− and masses below 4.46 GeV (with the exception of the (ω1ω2ω30) = (1110)
states at 5.03 GeV, see Sect. 4). Between these two values, there are states with at least 7 unpaired constituent gluons,
whose charge conjugation eigenvalues have yet to be determined. We do know, however, the charge conjugation of states with
(ω1ω2ω30) = (3220) to be C = +1

of the C-undetermined states has (ω1ω2ω30) = (4330), i.e.
10 unpaired constituent gluons, (λ, µ) = (1, 0), L = 1 and
n% = N2 = 0, leading to JP = 1+ and a mass of 5.08 GeV.
This state sets the limit indicated in Figs. 2 and 3.

Turning now to the negative-parity sectors, there are
states with at least seven unpaired constituent gluons,
whose charge conjugation eigenvalues have yet to be de-
termined. The lowest-lying among them has (ω1ω2ω30) =
(3310), (λ, µ) = (0, 2), L = 0 and n% = N2 = 0, and hence
JP = 0− and a mass of 4.46 GeV. All states with nine un-
paired constituent gluons have masses above that value.
We have, however, determined the charge conjugation of
(3220) to be C = +1 and that of (4210) (not indicated in
the figure) to be C = −1. Using the latter fact one can
show that the lowest-lying 3−+ state has a mass of 5.03
Gev, although there may be states with PC = −+ and
other angular momenta between 4.46 and 5.03 GeV that
we cannot classify completely at present. However, none
of these states can contain a representation T1 or A2 on
the lattice (i.e. J 6= 1, 3, 4, . . .). Similarly, we can conclude
that the first state in this energy range containing A−−

2

is the 3−−∗∗ at 4.68 GeV. However, there are candidate
states for A−−∗

1 , A−−∗∗
1 and E−−∗∗ below this value, so

for the time being we cannot make predictions for these
states on the lattice. All these facts have been used in
constructing Tables 2 and 3.

Finally, we would like to compare our results to those
of other effective models [1]–[5]. The oldest and also the
most successful among these is the MIT bag model [1].
All predictions for glueball masses in this model that we
were able to find in the literature come out far too low.
If we, however, take the predictions of Donoghue, John-
son, Li (and of Jaffe, Johnson for the (TM)2 modes) [1]
and simply scale the energy up by a factor of about 2.2,
the lattice results are roughly reproduced. At this level,
fine-structure corrections are absent, and the quality of
the approximation is comparable to our model when we
just order the states in accordance with the number of
constituent gluons.

Multiplying the energies by a factor of 2.2 roughly cor-
responds to changing B1/4 to 2.2 B1/4, where B is the bag
constant that characterizes the confining force. In the old
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Table 3. Predictions from our model for states that can possibly be measured on
the lattice in the near future. The first five columns are as in Table 2, while the sixth
gives the corresponding representations on the lattice, where the angular momentum
J is replaced by the label R referring to the representations of the cubic group O (see
[33]). A superscript asterisk marks an excited state in columns five and six (in column
six we have listed only those components which can be seen on the lattice as at most
second excitations). Where the degree of excitation of a certain state could not be
determined from our mass estimates due to the degeneracy of several states in our
model, possible higher degrees of excitation were indicated by superscript asterisks in
parenthesis. The last column gives our mass estimates and a few preliminary results
from the lattice. An asterisk in front of a value indicates that the corresponding state
can only be determined from a second excitation on the lattice, which appears to be
rather demanding with present techniques

(ω1ω2ω30) L (λ, µ) n% N2 JPC RPC mass
[GeV]

(0000) 0 (0,0) 0 2 0++∗ A
++∗(∗)
1 3.02

(0000) 0 (0,0) 0 2 2++∗ E++∗(∗), T
++∗(∗)
2 3.02

3.29±.02 [10]
(0000) 0 (0,0) 0 2 4++ A

++∗(∗)
1 , E++∗(∗), 3.02
T++

1 , T
++∗(∗)
2

(0000) 0 (0,0) 0 3 4++∗ T
++∗(∗∗)
1 3.69

(0000) 0 (0,0) 0 3 6++ A
++(∗)
2 , T

++∗(∗∗)
1 3.69

(0000) 0 (0,0) 0 4 6++∗ A++∗∗
2 ∗ 4.27

(1110) 0 (0,0) 1 0 0−+∗ A−+∗
1 3.80

3.64±.04 [10]
(1110) 0 (0,0) 0 2 0−+∗∗ A

−+∗∗(∗)
1 ∗ 4.30

(1110) 0 (0,0) 0 2 2−+∗ E−+∗(∗), T
−+∗(∗)
2 4.30

3.93±.02 [10]
(1110) 0 (0,0) 0 2 4−+ A

−+∗∗(∗)
1 , E−+∗(∗), 4.30
T −+∗

1 , T
−+∗(∗)
2

(1110) 0 (0,0) 0 3 4−+∗ T
−+∗∗(∗∗)
1 ∗ 5.03

(1110) 0 (0,0) 0 3 6−+ A
−+(∗)
2 , T

−+∗∗(∗∗)
1 5.03

(2110) 1 (1,0) 0 1 1+−∗ T
+−∗(∗)
1 4.09

(3300) 3 (0,3) 0 0 3+−∗(∗) A
+−∗(∗)
2 , T

+−∗∗(∗)
2 4.69

(4110) 3 (3,0) 0 0 3+−∗(∗) A
+−∗(∗)
2 , T

+−∗∗(∗)
2 4.69

(4220) 0 (2,0) 0 0 0+−∗ A+−∗
1 4.77

(4220) 2 (2,0) 0 0 2+−∗ E+−∗ 4.79
(4220) 2 (2,0) 0 0 2+−∗∗ E+−∗∗ ∗ 4.79
(2110) 1 (1,0) 0 2 4+− A+−∗∗

1 ∗ 4.93
(3000) 1 (3,0) 0 0 1−−∗ T −−∗

1 3.88
(2210) 1 (0,1) 0 1 2−−∗ E−−∗, T

−−∗∗(∗)
2 4.44

(2210) 1 (0,1) 0 1 3−−∗ A−−∗
2 , T

−−∗∗(∗)
2 4.44

(3000) 1 (3,0) 0 1 3−−∗∗ A−−∗∗
2 ∗ 4.68

bag model calculations this constant has been adjusted to
the meson spectrum. It then appears plausible that B1/4

has to be changed by a factor of 2.2 ≈ 9/4 in order to de-
scribe glueballs, since the factor 9/4 can be understood as
the ratio of the colour charge of gluons to that of quarks.
Of course, the rather large fine-structure corrections would
have to be calculated anew to see if the MIT bag model
can really account for a quantitative description of the
glueball spectrum. As a first step, however, the masses of
higher states should be estimated in order to make sure
that the part of the spectrum above ∼ 4 GeV as measured
on the lattice can also be qualitatively understood within

this model. The calculations in [15] can be taken as a hint
that one will have to consider states with more than three
gluons.

Let us remark that the constituent gluons of the bag
model are very different from the ones in our model as
they basically arise by putting free gluons into the bag.
Consequently, boundary conditions at the bag surface and
possible orbital motions play an important rôle. None of
this makes any sense in our effective Hamiltonian descrip-
tion. A potential advantage of the bag model is that it
allows, at least in principle, for a description of the inner
structure of the glueballs.
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In [34] it was suggested to consider the canonical di-
mension of the gauge-invariant operators that can create
a glueball with a given JPC out of the vacuum in order
to obtain a qualitative understanding of the level ordering
of the spectrum. The results are somewhat similar to the
bag model (without fine structure corrections), but com-
pare less favourably with the lattice data. Of course, it
is also unclear how these ideas could be refined to yield
quantitative predictions for the spectrum.

There are other models like the “glue-lego” model [2],
the flux-tube model [3] and the non-relativistic potential
model [4] which are, at least in their original forms, more
or less excluded by the available lattice data. A relativis-
tic version of the potential model is given by a recent
Bethe-Salpeter calculation with massive constituent glu-
ons [5]. With a gluon mass of 0.4 GeV very reasonable val-
ues for the masses of the 0++, 2++ and 0−+ glueballs are
obtained, while the 2−+ comes out far too low and may be
spurious. In [6] a phenomenological QCD Hamiltonian is
combined with a BCS type vacuum, which leads to an ef-
fective mass for the constituent gluons. Results are given
for the masses of the 0++, 2++, 0−+ and 2−+ glueballs
including excited states. The agreement with lattice data
is satisfactory considering the approximations made. We
emphasize that again the constituent gluons in all these
models are different in nature from the ones in our model,
and there is at present no way to relate the two concepts.

Finally, sum rule calculations [35] have their place
somewhere between effective models and microscopic
QCD. Up to now, predictions have been obtained only for
the three lowest-lying glueballs and these are consistent
with lattice measurements.

In some of the phenomenological models a 1−+ state
with a relatively low mass is predicted. This state is of
some importance for experimental glueball searches, since
it cannot be obtained from the quark model for mesons.
In our model the 1−+ is a seven-gluon state and conse-
quently its mass is rather large, in agreement with the
lattice data. The problem with this state in other models
can be traced to additional longitudinal degrees of free-
dom for the massive gluons, which in our case are absent
as we have already pointed out in Sect. 3.

We would like to conclude this section by remarking
that in our model states with n% ≥ 1 (with the exception
of the 0++ glueball) appear as unbound states of n% 0++

glueballs and the rest, insofar as the total energy of the
state is just the sum of the energies of these components.
Within the model, this is of course merely a consequence
of the fact that the %-dependence of the effective Hamilto-
nian is given by a harmonic oscillator. In physical terms,
such states may correspond to very loosely bound states
of n% 0++ glueballs and other glueballs. On the lattice,
these states may possibly be identified by analyzing their
overlaps with different lattice operators and finite-volume
effects. Such an enterprise is currently being envisaged
[10]. From our model, there is precisely one candidate for
such a weakly bound state that has already been measured
on the lattice, namely the 0−+∗ state which should appear
as a bound state of a 0++ glueball with a 0−+ glueball.

However, it must be noted that the lattice calculations of
[10] give a larger mass for the 0−+ glueball and a slightly
smaller one for the 0−+∗, so that the weak binding might
be merely an artefact of our approximation.

5 Conclusions

In this paper we have performed a group-theoretic anal-
ysis of many-gluon states, based on the assumption that
for the low-lying part of the spectrum only one mode of
the gluonic field (transforming under colour rotations and
parity transformations like a constant mode) is impor-
tant. The classification of the states involves a U(8) colour
group and a U(3) spin group. The former is reduced via an
O(8) group to the colour group SU(3). For each given par-
ity and charge conjugation the irreps of this O(8) group
classify bands of states. We remarked that in the context
of charge conjugation the decomposition into elementary
permissible diagrams (epds) proved very useful. The sys-
tematic determination of epds for higher O(8) irreps is
presently under investigation [24].

One of the outcomes of the analysis is the possibility
of defining a certain quantum number which we identified
with the number of constituent gluons, which again we
emphasize are different from perturbative gluons or con-
stituent gluons arising in other phenomenological models.
The ordering of the states with respect to this quantum
number allows for a qualitative explanation of the level or-
dering of glueball states with respect to spin as observed
in lattice calculations, assuming that the energy of the
states increases monotonically with the number of con-
stituent gluons. The ordering of the glueball states has
been one of the most puzzling results of lattice simula-
tions. It is worth noting that the MIT bag model might
also be able to reproduce the glueball spectrum, provided
that the value of the bag constant is chosen differently
from the one used for quark states. To check this asser-
tion new bag model calculations for glueballs are needed.

In the second part of the paper we motivated a specific
form for an effective Hamiltonian of low-energy pure QCD
which depended only on the spatially constant modes of
the gluon field. We introduced collective coordinates re-
lated to the monopole and quadrupole degrees of freedom
of the intensity of the gluon field and rewrote the kinetic
part of the Hamiltonian in terms of these variables using
the results of [12]. Expanding in terms of b and (1/σ2)
where b parametrizes the absolute deformation of the in-
tensity distribution and σ2 is related to the quantum num-
bers of the O(8) group, and making an additional simpli-
fying assumption for the potential term, we were able to
deduce to lowest order a Hamiltonian which is a function
of a one- and a five-dimensional harmonic oscillator and of
Casimir operators contained in the U(8) ⊃ O(8) ⊃ SU(3)
chain of groups. Taking into account higher contributions
via a redefinition of the coefficients of these operators
we arrived at a phenomenological, QCD-motivated model
Hamiltonian. The eigenstates of this Hamiltonian could be
classified by the quantum numbers arising in the group-
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theoretical analysis, and in particular the number of con-
stituent gluons turned out to be a good quantum number.

By fitting the parameters appearing in the Hamilto-
nian we adjusted the spectrum of the model Hamiltonian
to the “experimental” glueball spectrum, “experimental”
in this context meaning lattice simulations. The general
level of agreement was seen to be very good and predic-
tions for several further states could be made. In quali-
tative terms, we predicted a much denser spectrum than
that seen on the lattice without, however, running into in-
consistencies with present lattice measurements. We have
thus, with little input, principally the kinematical, i.e.
group theoretical, structure of QCD, been able to deduce a
great deal about the structure of an effective QCD Hamil-
tonian.

We can naturally envisage several possible further in-
vestigations. Of course, an obvious challenge is the deriva-
tion of an effective Hamiltonian from first principles.
Without some form of infrared cutoff, such as a fermi-sized
box, this will require a solution of the full crossover prob-
lem, i.e. a description of the interpolation between quarks
and gluons as effective degrees of freedom at high energies
and hadrons at low energies. The collective coordinates
introduced in this paper may prove useful in this context
for the description of the low-energy degrees of freedom.
Furthermore, a theoretic justification of the basic assump-
tion made, that an effective Hamiltonian depending only
on the constant modes of the field can yield the full glue-
ball spectrum, is highly desirable. One could also think of
possible extensions of the model, for example by including
composite operators, in order to describe the inner struc-
ture of the physical states. Finally, it would of course be
of interest to try and define collective variables related to
quarks and anti-quarks, in a similar fashion to what has
been done here for gluons. In that way the model could be
extended to describe quark-model mesons and baryons, as
well as the mixing between quarkic mesons and glueballs.
Work on these topics is in progress.
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and DGAPA for financial support. A.W. would like to thank
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thanks P. van Baal for useful and interesting discussions. This
research was partially funded by CONACyT grant number
3298P-E9607.

Appendix A Reduction of O(8) to SU(3)

In this section will determine the reduction of the group
O(8) to SU(3). The reduction from U(8) to SU(3) is
known [15,19] as is the reduction from U(8) to O(8) [17].
The reduction from O(8) to SU(3) can then be obtained
in a recursive manner, starting from the simplest irrep [0]
in U(8).

For the scalar irrep [0] of U(8), the reduction to O(8)
is (0000) and the reduction to SU(3) is (0, 0), hence the
SU(3)-irrep (0, 0) is contained once in the (0000) irrep of

O(8), which is trivial. Also the corresponding reduction of
U(3) via SUJ(3) to SO(3) is trivial, i.e. the [0] irrep of
U(3) only contains the spin J = 0. We have used the fact
that the Young tableaux of the U(8) and U(3) irreps have
to be the same.

The U(8) irrep of one gluon (not presented in Table 1
because we give only those irreps of U(8) which contain
at least one scalar irrep of SU(3)) reduces to (1000) of
O(8) [17] and to (1, 1) of SU(3), consequently the (1000)
irrep of O(8) must contain the (1, 1) irrep of SU(3). For
the corresponding reduction of U(3) to SO(3) we obtain
J = 1, the expected result for a one-gluon state.

For the case of a two-gluon system we have the sym-
metric [2] and antisymmetric [12] irreps of U(8). The first
reduces to SU(3) as (2, 2) + (1, 1) + (0, 0) (see [15,19]),
and for the corresponding reduction of U(3) to SO(3) we
find J = 0, 2, using the rules of (3). The reduction to O(8)
for [2] of U(8) is given by (2000) + (0000) ([17]). The ir-
rep (0000) already appeared in the reduction of the [0]
irrep of U(8), and we know that it contains one colour
zero irrep of SU(3). The other SU(3) irreps appearing in
the list of the reduction of U(8) to SU(3) are therefore
contained in the (2000) irrep of O(8), and in particular
the latter cannot contain any colour scalar. For the anti-
symmetric irrep [12] of U(8) the reduction to SU(3) yields
(1, 1) + (3, 0) + (0, 3) according to [15,19], and the reduc-
tion to O(8) is (1100), hence (1100) contains precisely the
SU(3) irreps given above.

In this manner, we can proceed recursively towards
higher U(8) irreps, thereby obtaining the complete reduc-
tion of O(8) to SU(3), and in particular the number of
colour singlets contained in a given O(8) irrep. The re-
sults for up to six constituent gluons are listed in Table 1,
together with the possible values of J from the reduction
to SO(3).

Appendix B Elementary permissible diagrams

As claimed in Sect. 2, any state characterized by the quan-
tum numbers in (1) can be obtained by a coupling of epds.
Here we list all the epds with up to six gluons:

(2, [2], J1) = [b†
a × b†

a][J1]
J1

(3, [3], J2) = dabc

[
[b†

a × b†
b]

[2] × b†
c

][J2]

J2

(3, [13], J3) = fabc

[
[b†

a × b†
b]

[1] × b†
c

][J3]

J3

(4, [22], J4) = Ŷ[22] ∗ dabcdab′c′

×
[
[b†

b × b†
c]

[2] × [b†
b′ × b†

c′ ][2]
][J4]

J4

(4, [212], J5) = Ŷ[2,12] ∗ dabcfab′c′ [b†
b × b†

c]
[0][b†

b′ × b†
c′ ]

[J5]
J5

(5, [312], J6) = Ŷ[3,12] ∗ faa′a′′fabcda′b′c′

×
[[

[b†
b × b†

c]
[1] × [b†

b′ × b†
c′ ]
][Jc] × b†

a′′

][J6]

J6

(5, [221], J7) = Ŷ[22,1] ∗ faa′a′′fabcda′b′c′
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×
[[

[b†
b × b†

c]
[1] × [b†

b′ × b†
c′ ]
][Jc] × b†

a′′

][J7]

J7

(6, [32], J8) = Ŷ[32] ∗ da1a2a3fa1b1c1fa2b2c2fa3b3c3

×
[
[b†

b1
× b†

c1
][1] × [b†

b2
× b†

c2
][Jb]

×[b†
b3

× b†
c3

][Jc]
][J8]

J8

. (41)

On the right-hand side the Young operator Ŷ appears,
which projects to a definite symmetry with respect to U(3)
(or U(8)) and hence via [h1h2h3] = [ω1ω2ω3] to a definite
O(8) irrep. The spins denoted by Jk (k = 1, 2, ..., 8) are
limited to the values J1 = 0, 2, J2 = 1, 3, J3 = 0, J4 = 0, 2,
J5 = 1, J6 = 0, 2, J7 = 1 and J8 = 1, 3. For the last three
epds in (41) intermediate couplings with spin labels Jb and
Jc appear, for each of which one of the possible values has
to be chosen. These are examples of the ambiguity in the
choice of epds mentioned in Sect. 2.

The epds have been determined by a procedure de-
scribed in Appendix D using the reduction of U(8) via
O(8) to SU(3) as deduced by the methods of Appendix
A. For the explicit construction of the epds we have used
the fact that every colour singlet state can be built up
from the three “fundamental tensors” δab, fabc and dabc

[36]. As a result, the decomposition of all states with up
to six consituent gluons in epds is known, and the charge
conjugations of the states can be obtained easily from the
charge conjugations of the corresponding epds. The latter
are readily determined from the explicit expressions (41)
as shown in Appendix C. The results for the charge con-
jugations of all states with up to six gluons are given in
Table 1, together with their parity eigenvalues determined
by (7).

In order to reproduce the lowest 1−+ and 0+− glueball
states we have to consider minimum weight states with
seven and eight gluons, respectively. The 1−+ state is con-
tained in the U(8) irrep [322], which reduces to the O(8)
irreps (3220), (3000), (2200), and others that do not con-
tain colour singlets. Among the former, (3000) and (2200)
can be obtained via a product of already determined epds
coupled to a definite U(8) irrep. The (3220) irrep is given
by a new epd,

(7, [322], J = 1) = Ŷ[3,22]∗faa1a2daa3a4da1b1c1da2b2c2da3b3c3

×
[[

[b†
b1

× b†
c1

][J1] × [b†
b2

× b†
c2

][J2]
][J12]

×
[
[b†

b3
× b†

c3
][J3] × b†

a4

][J34]
][1]
1

, (42)

which has parity P = −1 and charge conjugation C = +1
(see Appendix C).

The 0+− state can be obtained by multiplying the two
epds (3, [13], 0) and (5, [312], 0) coupled to the U(8) irrep
[422] and the O(8) irrep (4220). The charge conjugation
of the state is the product of the charge conjugations of
each epd, hence P = +1 and C = −1. In view of the
later discussion of excited glueball states, we note that
we have determined in similar ways the parity and charge

conjugation of colour zero states in the O(8) irrep (4210),
contained in the U(8) irrep [421], to be PC = −−, and for
the O(8) irrep (3320) contained in [322] we have obtained
PC = +−.

Appendix C Charge conjugation

In order to determine the charge conjugation C of a state
contained in a given O(8) irrep (ω1ω2ω30) (with (0, 0) as
colour for its SU(3) subgroup) we introduced in Sect. 2
the concept of epds. A list of epds for up to six gluons
is given in (41). Having determined the decomposition of
a state into epds, its charge conjugation can be obtained
simply by multiplying the charge conjugations of the epds.

In order to deduce the properties of the epds under
charge conjugation, we use the results in [21]. Consider
the monomial

Ta1a2.....an
b i1
a1

†
b i2
a2

†
...b in

an

†
, (43)

where summation over the indices ak is understood. Under
charge conjugation the monomial transforms to

ηa1ηa2 ...ηan
Ta1a2.....an

b i1
a1

†
b i2
a2

†
...b in

an

†
, (44)

the values of the ηa being given in (9).
As an example let us consider a special monomial of

order four with colour zero and a certain angular momen-
tum coupling,

dabcfade

[
[b†

b × b†
c]

J1 × [b†
d × b†

e]
J2

]J
M

. (45)

Applying the charge conjugation operator and inserting a
trivial factor η2

a = 1, the SU(3) coupling dabcfade trans-
forms to

(ηaηbηcdabc)(ηaηdηefade) ≡ d′
abcf

′
ade . (46)

Using (9) we note that

d′
abc = −dabc

f ′
ade = fade , (47)

i.e. the d-symbol contributes a minus sign while the f -
symbol contributes a positive sign.

This can be readily extended to any monomial with
colour zero. All one has to do is count the number of d-
symbols involved. Denoting this number by nd, the charge
conjugation is given by

C = (−1)nd . (48)

The charge conjugations of the epds in (41) follow imme-
diately.

Appendix D Construction of states

In this appendix, we will describe how states with up to six
constituent gluons can be constructed from the epds listed
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in (41). At the same time, we will show how to actually
determine the epds with the help of the reduction of U(8)
via O(8) to SU(3) as given in Table 1.

We begin with the decomposition of a given state in
a minimum weight state and gluon pairs. As stated in
Sect. 2, the lowest U(8) irrep containing a given O(8) irrep
(ω1ω2ω30) is described by the Young tableau [ω1ω2ω3].
According to (5) we can build up all higher U(8) irreps
with the same O(8) irrep by applying an arbitary coupling
of (n1 + n2 + n3) pair operators to the lowest state. Each
pair is represented by the U(8) irrep [2], and is identical
with the simplest epd (2, [2], J1) in the case M1 = J1
(maximum weight with respect to SO(3)).

A number of these pairs can be coupled to states repre-
sented by Young diagrams with an even number of boxes
in each row. This restriction arises because the pairs them-
selves represent identical bosons with six degrees of free-
dom each. The problem of coupling of the pairs is equiv-
alent to the reduction [17]

U(6) ⊃ U(3)
[1] → [2]

[n] →
∑

[2n1, 2n2, 2n3] , (49)

where in the general reduction in the last line of (49) the
sum is over different partitions of n, n = n1 +n2 +n3. For
example, we have for the coupling of two and three pairs

[2] × [2] = [4] + [22]
[2] × [2] × [2] = [6] + [42] + [23] , (50)

respectively. The resulting irreps then have to be coupled
with a minimum weight state, [h1h2h3] = [ω1ω2ω3].

We will now construct all the states appearing in Ta-
ble 1 in this manner. Let us start by considering the (0000)
irrep of O(8). Coupling with one gluon pair operator, we
obviously obtain the U(8) irrep [2]. The results of the cou-
pling of two and three pairs are given in (50). We thus get
all the states with up to six gluons for the scalar irrep
(0000) of O(8) (cf. Table 1).

In Table 1 we find two U(8) irreps with three gluons,
[3] and [13], both of which cannot be constructed by a
coupling of pair operators. They hence give rise to epds,
(3, [3], J2) and (3, [13], J3), which – in contradistiction to
(2, [2], J1) – are minimum weight states. We now couple
pair operators with these epds. As we exclusively consider
states with up to six gluons, only one gluon pair will be
coupled. We thus arrive at the U(8) irreps [5] + [41] + [32]
for the O(8) irrep (3000) and [312] for (1110) in agreement
with Table 1.

Similarly, there appear states with four and five glu-
ons in Table 1, namely the U(8) irreps [22], [212], [221]
and [312], which obviously cannot be obtained through
coupling of the epds with two or three gluons, and hence
give rise to new epds themselves (see (41)). We can still
couple one gluon pair with the four-gluon epds to obtain
the states given in Table 1.

Finally, for the six-gluon states we consider couplings
of the epds with three gluons as for example [3]×[3] = [6]+

[42], where similar restrictions apply as for the coupling of
several [2] irreps of U(8) (see (106) of [17]). We hence ob-
tain new minimum weight states for the O(8) irreps (6000)
and (4200). The other couplings are [3] × [13] = [412] and
[13]× [13] = [23], with the corresponding minimum weight
states (4110) and (2220).

There is one state in Table 1 which cannot be con-
structed in this way, namely the U(8) irrep [32], which
consequently yields the last epd in (41). The decomposi-
tion of the states in epds is useful because it immediately
determines the charge conjugation of the states in terms
of the charge conjugation of the epds (see the previous
Appendix C).
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19. R. López, P. O. Hess, P. Rochford, J. P. Draayer, J. Phys.

G 23 (1990), L229
20. A. R. Edmonds, “Angular Momentum in Quantum Me-

chanics”, Princeton University Press, New Jersey (1974)
21. R. Slansky, Phys. Rep. 79 (1981), 1 (see p. 43) and ref-

erences therein; A. Weber, PhD thesis, University of Hei-
delberg 1995 (unpublished)

22. T. Molien, Berliner Sitzungsberichte 11 (1898), 1152; R.
Gaskell, A. Peccia, R. T. Sharp, J. Math. Phys. 19 (1978),
727

23. E. Chacón, M. Moshinsky, R. T. Sharp, J. Math. Phys.
17 (1976), 668; E. Chacón, M. Moshinsky, J. Math. Phys.
18 (1977), 870

24. Yu. I. Smirnov, P. O. Hess, work in progress
25. J. M. Eisenberg, W. Greiner, “Nuclear Theory: Nuclear

Models”, 3rd edition, North-Holland, Amsterdam (1987)

26. E. Chacón, P. O. Hess, C. R. Sarma, Kinam 4 (1982), 227
27. R. Gilmore, “Lie Groups, Lie Algebras and some of their

Applications”, John Wiley, New York (1974)
28. A. J. Dragt, J. Math. Phys. 6 (1965), 533
29. C. Michael, in “Confinement, Duality, and Nonperturba-

tive Aspects of QCD”, ed. by P. van Baal, NATO ASI Se-
ries B 368, Plenum Press, New York (1998); in “Hadron
Spectroscopy 1997”, ed. by S.-U. Chung, H. J. Willutzki,
AIP Conference Proceedings 432, American Institute of
Physics (1998)

30. X.-Q. Luo, Q. Chen, S. Guo, X. Fang, J. Liu, Nucl. Phys.
B (Proc. Suppl.) 53 (1997), 243

31. C. Morningstar, M. Peardon, Phys. Rev. D 56 (1997),
4043

32. CERN-routine Minuit, Cern library (1995)
33. B. Berg, A. Billoire, Nucl. Phys. B 221 (1983), 109
34. R. L. Jaffe, K. Johnson, Z. Ryzak, Ann. Phys. (N.Y.) 168

(1986), 344
35. M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, Nucl.

Phys. B 147 (1979), 385 and 448; S. Narison, Nucl. Phys.
B 509 (1998), 312; Nucl. Phys. B (Proc. Suppl.) 64
(1998), 210

36. P. Dittner, Commun. Math. Phys. 22 (1971), 238; ibid.
27 (1972), 44


